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ensory signals during active versus passive movement
athleen E Cullen
Our sensory systems are simultaneously activated as the

result of our own actions and changes in the external world.

The ability to distinguish self-generated sensory events from

those that arise externally is thus essential for perceptual

stability and accurate motor control. Recently, progress has

been made towards understanding how this distinction is

made. It has been proposed that an internal prediction of the

consequences of our actions is compared to the actual sensory

input to cancel the resultant self-generated activation.

Evidence in support of this hypothesis has been obtained

for early stages of sensory processing in the vestibular,

visual and somatosensory systems. These findings have

implications for the sensory–motor transformations that are

needed to guide behavior.
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Introduction
Most of our sensory experiences are gained by active

exploration of the world, for example, by locomotion, eye

movement and touch. Normally, we can readily distin-

guish between sensory signals that register changes in the

external world (exafference) and those that result from

our own actions (reafference). The ability to make this

distinction is essential both for our perceptual stability

and for spatial orientation and the construction of neural

representations of the environment to guide behavior

accurately. When we make eye movements, for example,

the world moves across our retinas, but we do not perceive

the world as moving. How do we distinguish sensory

events resulting from our own actions from those that

arise externally?

So far, most analyses of sensory processing have been

done in an experimental framework that is designed to
t Opinion in Neurobiology 2004, 14:698–706
test passive rather than active sensation. Recent results

from several laboratories have, however, yielded major

insights into our understanding of how sensory signals are

processed during movement. In this review, I consider

recent advances in this field, focusing on experiments in

the vestibular system that have provided evidence for the

differential processing of reafference early in sensory

systems [1�,2,3��]. Parallels between findings in this sys-

tem and those emerging from recent studies of the visual

[4,5,6�] and somatosensory [7��,8,9��] systems are also

considered. This body of work is discussed in relation

to prominent theories of motor control and addresses the

following questions. What information or cues are avail-

able to achieve perceptual stability? At what level in

sensory processing are active and passive sensory signals

differentially encoded? What mechanisms underlie dif-

ferential sensory processing? Finally, I consider the impli-

cations of these results in relation to how the processing of

sensory signals during motion is reflected in the sensory–

motor transformations that are needed to guide behavior.

Conceptual frameworks and model systems
Historically, the idea that animal behavior is triggered by

stimuli and based on reflex elements that are linked

together in a chain of activations has provided an impor-

tant conceptual framework in neurophysiology. The

focus on relationships between afferences and efferences

follows logically from the influential theory of a reflex

chain first made popular by Sherrington in 1906 [10]. In

classical reflex theory, any given stimulus results in a

predictable motor response (i.e. a reflex), and complex

behavior can be explained as the combined effect of a

chain of reflexes. Although this conceptual framework

remains to be abandoned completely, it is clear that the

‘cause’ of every response cannot be solely attributed to a

sensory stimulus.

In 1950, two separately but simultaneously published

studies by Von Holst and Mittelstaedt [11] and Sperry

[12] re-evaluated this dominant model and demonstrated

a need for the traditional perspective to be reversed.

Classical reflex theory asks what is the relationship

between afference (sensory information) and efference

(motor output)? These investigators argued, however,

that it is necessary to ask what happens when efference

causes changes in the state of an organism that are then

reverberated back into the nervous system as reafference?

To avoid responding to sensory inputs that arise from self-

generated actions, the sensory system needs to know what

the motor system has done. On the basis of their observa-

tions, Von Holst and Mittelstaedt [11] proposed the

‘principle of reafference’ (Figure 1a), in which a copy
www.sciencedirect.com
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(a) Simplified scheme of the reafference principle of von Holst and Mittelstaedt [11]. The motor command is sent to the effector muscle and

in turn sensory activation, resulting from the activation of sensory receptors by an effector, is returned. This reafference is then compared to an

efference copy of the original motor command. Here, reafference is arbitrarily marked ‘+’ and the efference copy is marked ‘�’. When the

reafference and efference copy signals are of equal magnitude they cancel, and no sensory information is transmitted to the next levels of

processing. By contrast, a difference between the reafference and the efference copy indicates an externally generated event (i.e. exafference)

that is considered behaviorally relevant and thus is processed further. (b) Primary afferent fibers from electroreceptors project to the cerebellum-like

electrosensory lobe (ELL) of mormyrid electric fish. Descending motor commands result in the generation of electric organ discharge, which

results in the activation of ampullary afferents (i.e. reafference). Corollary discharge signals associated with the motor command that elicits the

electric organ discharge are prominent in the mormyrid electrosensory lobe and are used to reduce the central effects of activity in ampullary

receptors evoked by the electric organ discharge (i.e. exafference) of the fish. Abbreviation: EMF, electromagnetic field. (c) Skate do not generate

electric fields but can detect them. The first-order neurons in this system are the principal cells of the dorsal octavolateral nucleus (DON). These

neurons receive proprioceptor inputs from the parallel fibers inputs of the dorsal granular ridge, which cancel electric magnetic field reafference

in the DON during respiration.
of the expected sensory results of a motor command,

which they termed the ‘efference copy’, is subtracted

from the sensory signal to eliminate reafferent informa-

tion. More recent behavioral investigations have general-
www.sciencedirect.com
ized this original proposal by suggesting that an internal

prediction of the sensory consequence of our actions,

derived from the motor efference copy, is compared to

the actual sensory input [13–15].
Current Opinion in Neurobiology 2004, 14:698–706
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In some model systems, including the electrosensory

systems of mormyrid fish [16,17] and elasmobranchii

(sharks, skates and rays [18]), the mechanosensory system

of the crayfish [19,20], and the auditory system of the

cricket [21�], evidence indicates that sensory information

arising from self-generated behaviors is selectively sup-

pressed at the level of afferent fibers and/or the central

neurons to which they project. The mechanisms by which

suppression occurs can differ. Bell and co-workers [16,17]

have provided concrete support for Von Holst and

Mittelstaedt’s principle of reafference in their investiga-

tions of the electrosensory system in mormyrid fish. In

this system, a negative image of the predicted reafference

is generated and added to neurons at the first stage of

central processing (Figure 1b). As a result, the fish does

not respond to the discharge from its own electric organ.

In the skate, by contrast, information from proprioceptive

inputs alone can generate a negative image of self-motion

during respiration [18]. This negative image is then used

at the first central stage of electrosensory processing to

remove the modulation of its electroreceptors that results

from its own motion (Figure 1c).

Vestibular processing during active head
movements
The vestibular system provides information about head

motion relative to space that is necessary for maintaining

posture, computing spatial orientation and perceiving

self-motion. The differential processing of actively versus

passively generated vestibular stimuli is crucial, however,

for controlling eye, neck and body movements, as well as

for perceptual stability (reviewed in [1�]). This point can

be easily appreciated by considering the simple example

of a vestibularly driven spinal reflex — the vestibulo-

collic reflex — which, in response to head motion, stabi-

lizes the head in space via activation of the neck muscu-

lature (Figure 2a). The compensatory head movements

produced by this reflex are clearly beneficial when the

behavioral goal is to stabilize head position in space.

When the behavioral goal is to make an active head

movement, however, the vestibular drive to the reflex

pathway would command an inappropriate head move-

ment to move the head in the direction opposite to the

intended goal.

At what level are the vestibular signals that arise from

passive versus active head movement first differentially

encoded? In the alert primate, the vestibular system does

not seem to distinguish between active and passive head

movements at the level of the vestibular afferents (Figure

2b; [2]), but the differential treatment of vestibular sig-

nals is evident at the next stage of processing. The head-

velocity-related modulation of one population of vestib-

ular nuclei neurons, which receive direct inputs from the

vestibular afferents, is markedly attenuated in response to

vestibular inputs that result from active head movements

(Figure 2c; [22,23]). Notably, these same neurons con-
Current Opinion in Neurobiology 2004, 14:698–706
tinue to respond selectively to passive head motion when

a monkey generates voluntary head movements while

undergoing passive whole-body rotation.

There are at least three extravestibular cues that could

contribute to canceling reafference at the level of the

vestibular nuclei. First, inputs from neck proprioceptors;

second, knowledge of the self-generated motion; and

third, neck efference copy signals. Roy and I [3��,23]

have explored each of these possibilities in the rhesus

monkey. First, we found that the activation of neck

proprioceptors is not sufficient for suppressing vestibular

reafference: neurons in the vestibular nuclei encode head

velocity similarly during passive rotations of the head

relative to the body and during passive rotations of the

head and body together.

Second, higher-order areas, such as parietoinsular vestib-

ular cortex, that are involved in the perception of self-

motion [24] are known to send substantial projections to

each of the vestibular nuclei [25]. We found, however,

that knowledge of self-generated head motion alone is not

sufficient to suppress vestibular reafference. Neurons

respond robustly to head velocity when monkeys drive

themselves through space by rotating a steering wheel

connected to the motor controller of a vestibular turntable

[23]. Third, a copy of the command to the neck muscles

(i.e. a motor efference signal) could be used to cancel

vestibular inputs during active head movements. We

found, however, that when head-restrained monkeys

attempted to move their heads, generating levels of neck

torque comparable to those issued during large active

head movements, neuronal responses were not modu-

lated [3��].

Further exploration has provided evidence for Von Holst

and Mittelstaedt’s principle of reafference in the primate

vestibular system [3��]. The activity of individual neurons

in the vestibular nuclei was recorded in monkeys making

active head movements and the correspondence between

intended and actual head movement was experimentally

controlled. We found that a cancellation signal was gen-

erated only when the activation of neck proprioceptors

matched the motor-generated expectation during active

head movements (Figure 3). This mechanism functions

to eliminate selectively self-movements from the subse-

quent computation of orientation and posture control.

These findings are the first to confirm Von Holst and

Mittelstaedt’s proposal at the level of single neurons in a

mammalian system.

Correlates for the differential processing of active and

passive vestibular inputs have been identified upstream

of the vestibular nuclei. Head direction cells in several

areas of the classic limbic circuit discharge preferentially

when a monkey or rat orients its head in a specific

preferred direction. These neurons, which are important
www.sciencedirect.com
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Figure 2
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In the vestibular system, second-order neurons distinguish between sensory inputs that result from self-actions and sensory inputs that arise

externally. (a) A subclass of neurons in the vestibular nucleus, named vestibular-only neurons on the basis of their responses in head-restrained

models, receive direct projections from the semicircular canals and in turn project bilaterally to spinal motor neurons to activate the neck

musculature. These neurons probably also send projections to the cerebellum, thalamus and cortex. (b) Activity of an example horizontal canal

afferent during (i) passive head movements, (ii) active head movements and (iii) combined active and passive head-in-space motion. Afferents

reliably encode head-in-space motion in all conditions. (c) Activity of an example VO neuron in the vestibular nucleus during the head movements

described in (b). Neuronal responses to the active component of head-in-space motion are significantly attenuated; by contrast, the neurons

show no attenuation in response to the passive rotation component. Abbreviations: FR, firing rate;Ḣ, horizontal head velocity. Afferent responses are

based on data from [2], and (c) is modified from data reported in [23].
for spatial memory and navigation, respond more robustly

during active than during passive head rotations [26]. In

addition, neurons in the ventral interparietal area, one of

several ‘vestibular’ areas identified in the parietotemporal

cortex, have been studied during active and passive head

movements. The results show that there are considerable

differences in neural responses during active versus pas-

sive head movements [27]. This differential processing of

vestibular inputs most probably reflects the integration of

information from an efference copy of motor commands

and from proprioceptive and vestibular sources required

for the perception of self-motion and for the representa-
www.sciencedirect.com
tion of extrapersonal space. I take this point up again

further below.

Visual processing during voluntary eye
movements
How the visual world is perceived as stable despite

movements of the eyes, head and body is an issue that

concerned many eminent scientists of the last century

including von Helmholtz, Hering, Mach and Sherrington.

Although targets rapidly jump across the retina as we

move our eyes to make saccades, we never see the world

move over our retina. Helmholtz [28] made the salient,
Current Opinion in Neurobiology 2004, 14:698–706
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Figure 3
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In the vestibular system, an internal model of the sensory consequences of active head motion is used to selectively suppress reafference

at the level of the vestibular nuclei. (a) Activity of an example VO neuron (gray-filled trace) during passive whole-body rotation. In this condition,

only vestibular inputs are available to the central nervous system and there is no motor efference copy signal because the monkey does

not actively move its head. (b) Activity of the same neuron during active head-on-body movements. In this condition, the monkey commands an active

head movement and thus an efference copy signal is theoretically available. In addition, the movement of the head activates vestibular and

proprioceptive afferents as a result of the head-in-space (ḢS) and head-on-body (ḢB) movement, respectively. A prediction of the activity of the

neuron, based on its response to passive head motion, is superimposed (bold trace). (c) The neuron is recorded as the monkey actively moves its

head; however, the head-in-space velocity (ḢS) that is generated by the monkey (broken arrow) is experimentally cancelled by simultaneously

rotating the monkey in the opposite direction (unbroken arrow). Consequently, in this condition the head moves relative to the body (ḢB),

but not to space (ḢS); as a result, an efference copy signal is generated and the neck proprioceptors are activated, but vestibular afferent input is

greatly reduced. This approach reveals a cancellation signal that is sent to the vestibular nuclei in conditions in which neck proprioceptive inputs

match those expected based on the neck motor command, but not when these inputs are vastly different. Indeed, the marked inhibition in the

response of the neuron shows excellent correspondence to that from the difference in response during passive (a) versus active (b) head

movements. Abbreviation: FR, firing rate. Modified from data reported in [3��].
and easily replicated, observation that tapping on the

canthus of the eye to displace the retinal image, for

example during a saccadic eye movement, results in an

illusionary shift of the visual world. How can continually

changing retinal inputs to the visual system thus result

in the perception of a stable visual world during eye

movements?

Our visual sensitivity is reduced during and just before a

saccadic eye movement — a phenomenon that is referred

to as ‘saccadic suppression’. Psychophysical data have

shown that suppression is strongest for stimuli that would

preferentially activate the magnocellular dorsal visual

processing stream, which carries transient, motion-related

visual information (e.g. see [29]). Neural correlates for

saccadic suppression have been now identified at several

stages of visual processing. Significant saccade-related

responses can be observed early in visual processing at

the level of the dorsal lateral geniculate nucleus of the

thalamus [4,5]. Reppas et al. [5] found that the most

common effect was a biphasic modulation of response

strength (weak suppression followed by strong enhance-

ment), which was far more prominent for neurons in the

magnocellular than the parvocellular layer. Moreover,
Current Opinion in Neurobiology 2004, 14:698–706
correlates of saccadic suppression are most evident in

magnocellular recipient areas including medial temporal

and medial superior temporal cortex of rhesus monkey

[30].

Results of studies in humans are remarkably consistent

with these findings. For example, functional magnetic

resonance imaging (fMRI) studies show saccade-related

changes in areas that receive magnocellular input includ-

ing medial temporal cortex, V7 and V4 [31]. In addition,

transcranial stimulation studies in humans have provided

evidence that saccadic suppression occurs via extraretinal

mechanisms in the thalamus or primary visual cortex [6�].
Note, however, that there might be differences in the

strategies adopted across species (e.g. see the work of

Olveczky et al. [32�] in rabbit).

The mechanisms that underlie saccadic suppression

remain to be fully elucidated. Proprioceptive information

from the stretch receptors in the extraocular muscles

could be used for this purpose; however, the relative

timing of saccadic suppression and eye movement sug-

gests that inputs from saccadic planning centers (e.g. an

efference copy or corollary discharge signal) are crucial.
www.sciencedirect.com
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Somatosensory processing during active
touch
Touch is also clearly an active process. Fingers or whis-

kers, like eyes, move as they scan the external world.

These movements thus determine the nature of the

sensory input that will be encountered. As pointed out

by Gibson [33], the constancy of the tactual world is

characterized by the stability of an object. For example,

movement of a skin surface over a corner of an object does

not usually give rise to recognition of the ‘tactile motion’.

The whiskers (vibrissae) system in rats has proved to be

an excellent experimental model of active touch. During

whisking, the responses of first-order neurons in the

trigeminal ganglion of the vibrissae system cannot be

inferred from their responses to comparable passive whis-

ker deflection. Ahissar and co-workers [7��] have recently

shown that, during intervals of whisking, these neurons

carry both a reference signal that encodes the current

position of the rat’s vibrissae and a more ‘typical’ sensory

signal that encodes contact of the vibrissae with an object.

Timing differences between the reference and the con-

tact signals carried by neurons can be used to compute the

position of an object in space. In this system, the position

of vibrissae within a cycle could be encoded primarily

through direct sensory activation rather than via central

pathways. Nevertheless, there is some evidence for the

existence of a modulatory efference copy at the cortical

level that might influence the amplitude of whisking [34].

Central information of this kind can be used to tune large-

scale feedback loops in the vibrissae sensorimotor system

to optimize sensory processing [8].

In primates, correlates for the differential active proces-

sing of touch have been found in somatosensory cortex,

where neuronal responses are attenuated for self-

produced versus externally produced tactile stimuli

[35]. In humans, self-generated tactile stimulation does

not result in the same tickling sensation that arises when

the stimulation is externally produced [36–38]. Blakemore

et al. [37] have shown, however, that when an artificial

delay or trajectory perturbation is introduced between a

movement and the resultant tactile stimulation, self-

generated stimulation is rated as more ticklish. Thus,

as in the vestibular system, when the sensory sensation

no longer corresponds to the motor command, the pre-

dicted image of the afferent signal (in this case a tickle

stimulus) does not fully cancel the distorted reafference.

The analogy between findings in these two systems

implies that the vestibular system is effectively ‘ticklish’.

Common strategies?
Studies of the primate vestibular system have shown that

a cancellation signal is used at the first level of central

processing to suppress vestibular activation resulting from

active head movements. An investigation by Roy and

myself [3��] found that this cancellation signal is gener-
www.sciencedirect.com
ated only when the activation of neck proprioceptors

matches the motor-generated expectation, thereby elim-

inating vestibular signals that result from active head-on-

body movements. Such a mechanism has clear analogies

to that used by the electrosensory system of the mormyrid

fish to cancel reafference. In addition, recent behavioral

studies in humans have shown that a similar strategy is

used by the somatosensory system.

Where is the essential cancellation signal actually com-

puted for each system? Evidence from work in electric

fish indicates that the cerebellum-like electrosensory

lobes provide the signal that is used to cancel the sensory

response to self-generated stimulation [39]. Moreover,

fMRI studies have suggested that the cerebellum has a

similar role in the suppression of tactile stimulation dur-

ing self-produced tickle [36–38]. More recently, however,

the results of a fMRI study of active hand movements has

led to the proposal that efference copy information is not

located in the cerebellum per se, but instead is imple-

mented via interactions between perceptual areas and

motor areas in a task-dependent way [40�]. Identifying

the neural representations of efference copy information

in different tasks promises to be an interesting area of

investigation.

It remains to be determined whether a comparable frame-

work can be used to describe the processing that selec-

tively suppresses reafference across all or even most

modalities. It is now clear that other mechanisms can

contribute to the differential processing of reafference.

For example, peripheral mechanisms have an essential

role in processing touch during active whisking, as

described above. In addition, a recent study has shown

that during active wrist movements in primates, cutaneous

inputs are presynaptically inhibited at the level of the

spinal cord afferents [9��]. The timing of the attenuation

suggests that descending motor commands, rather than

peripheral feedback from the movement, generate the

inhibition. This strategy is markedly different from that

used by the vestibular system: vestibular afferents do not

differentially encode active versus passive head move-

ments; instead, reafference is distinguished only at the

next stage of processing in the vestibular nuclei.

Implications: consequences for motor
control
The differentiation of sensory stimulation that arises from

passive versus active movement is not only crucial for

perceptual stability but is also required to produce accu-

rate neural representations of the environment to guide

behavior accurately. The implications of this are particu-

larly obvious for the vestibular system, where the second-

order sensory neurons function as both sensory and pre-

motor neurons. Second-order vestibular neurons, which

are differentially sensitive to active and passive head

movements, project to the spinal cord and mediate
Current Opinion in Neurobiology 2004, 14:698–706
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postural reflexes such as the vestibulo-collic reflex

(Figure 2a). Accordingly, their reduced sensitivity during

active head movements is consistent with their functional

role in head stabilization, because their modulation is

actually counterproductive during these self-generated

movements. The fact that these same neurons continue

to encode information faithfully about passive head rota-

tions that occur during the execution of voluntary move-

ments [22,23] is also important. As a person explores the

environment, these neurons will selectively respond to

adjust postural tone in response to any head movements

that the brain does not expect. This selectivity can be

crucial, for example, in recovering from tripping over an

obstacle while walking or running, which requires a

robust postural response.

Vestibular pathways that control postural responses must

combine vestibular inputs with information from other

sources, such as neck and body proprioceptive informa-

tion, to generate appropriate motor responses. This can be

easily appreciated by considering two subjects: one whose

head is pointing forward, and another whose head is

rotated 908 to one side. To ensure postural stability,

the same vestibular stimulus will need to activate differ-

ent muscle combinations in each subject. In this example,

combining neck proprioceptive information with head-

referenced vestibular inputs to the brain will provide

information about motion of the body in space and,

indeed, there is recent evidence for such a multimodal

integration of vestibular and proprioceptive inputs. Some

neurons in the rostral fastigial nucleus of alert primates

encode movement of the body rather than the head in

space during passively applied rotational [41] and transla-

tional [42] motion. Thus, during passive movements

these neurons encode movement in a body-referenced

coordinate system.

To date, coordinate transformations, which have been

observed in many brain areas, have been characterized in

studies designed to test passive rather than active sensa-

tion. What do these neurons encode during active move-

ments? The rostral fastigial nucleus is a particularly

interesting example to consider with regard to this ques-

tion. It is thought to be important in vestibulo-spinal

control, including the regulation of gait and postural

mechanisms. Thus, the same arguments made above

for the utility of selective gating of vestibular reafference

at the level of the vestibulo-spinal neurons could be

applied to the rostral fastigial nucleus. By extension, a

similar logic can be applied to areas that have been

implicated in higher-order perceptual functions. Spatial

perception is more accurate in response to active than to

passive rotations [43–45]. The absence of a signal related

to motor efference copy, at the level of higher-order

vestibular areas such as parietal cortex might prevent

the complete updating required for accurate spatial loca-

lization [46], consistent with the differences in the pro-
Current Opinion in Neurobiology 2004, 14:698–706
cessing of active and passive movement that can be found

at these higher levels of processing.

Conclusions
Over 50 years ago, Von Holst and Mittelstaedt [11]

proposed that the brain generates a sensory expectation

based on the motor command, compares it with the actual

sensory feedback, and subtracts the self-generated sen-

sation. In this way, the nervous system could theoreti-

cally differentiate sensory inputs that arise from external

sources from those that result from self-generated move-

ments. Recent work in several systems has provided

evidence in support of this hypothesis, as well as evi-

dence for other mechanisms that suppress reafference in

the early stages of sensory processing. It remains a

challenge to understand how the differential processing

of sensory inputs in the early stages is used by the

upstream networks that mediate perceptual stability

and guide behavior.
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